李迪开 1,2曹磊峰 2,3,*  4周征 5[ ... ]  1,2,3
作者单位
摘要
1 深圳技术大学 工程物理学院,广东 深圳 518118
2 深圳技术大学 深圳市超强激光与先进材料技术重点实验室,广东 深圳 518118
3 深圳技术大学 先进材料测试技术研究中心,广东 深圳 518118
4 中国科学院 高能物理研究所,北京 100049
5 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
6 广东中科揽胜辐射防护有限公司,广东 佛山 528200
应相关建设安评、环评、稳评以及职业健康评估的要求,电子加速器设计过程中即应对其辐射情况进行分析。针对电子能量为40~95 MeV可调的光阴极微波电子枪直线加速器,对其辐射源项进行分析,并讨论了可能的辐射防护措施的效果。采用蒙特卡罗软件FLUKA对电子束流和加速器进行建模,通过模拟计算发现,加速器产生的等效剂量分布主要位于废束桶中,废束桶以外辐射剂量迅速下降,在电子加速器实验大厅四周设置混凝土墙体的情况下辐射等效剂量率将随墙体厚度迅速下降。若混凝土墙体厚度设置为1 m,则墙体外工作人员所在区域辐射等效剂量率不高于1 μSv/h量级,能够有效屏蔽加速器产生的电离辐射,给工作人员提供有效防护。研究方法及结果对同能区同类型加速器建设中的辐射分析及辐射防护评估具有一定的参考价值。
电子加速器 FLUKA模拟 电离辐射 辐射源项分析 辐射防护 electron accelerator FLUKA simulation ionizing radiation radiation source term analysis radiation protection 
强激光与粒子束
2022, 34(6): 064008
Author Affiliations
Abstract
1 Nanophotonics Research Centre, Shenzhen University, Shenzhen 518060, China
2 State Key Laboratory of Optoelectronic Material and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
3 Institute of Optics and Electronics, Nanjing University of Information Science and Technology, Nanjing 210044, China
4 e-mail: bo@nuist.edu.cn
5 e-mail: lzhh88@mail.sysu.edu.cn
6 e-mail: xcyuan@szu.edu.cn
Stokes vector direct detection is a promising, cost-effective technology for short-distance communication applications. Here, we design and fabricate a spin-dependent liquid crystal grating to detect light polarization states. By separating the circular and linear components of incident light, the polarization states can be resolved with accuracy of up to 0.25°. We achieved Stokes vector direct detection of quadrature phase-shift keying (QPSK), 8PSK, and 16-ary quadrature amplitude modulation signals with 32, 16, and 16 GBd rates, respectively. We integrated the system, including the grating, photodetectors, and optical elements, on a miniaturized printed circuit board and demonstrated high-speed optical communications with 16 GBd rate QPSK signals.
Photonics Research
2021, 9(8): 08001470
Houkai Chen 1†Yuquan Zhang 1†Yanmeng Dai 1†Changjun Min 1,3,*[ ... ]Xiaocong Yuan 1,4,*
Author Affiliations
Abstract
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 Tianjin Union Medical Center, Tianjin 300121, China
3 e-mail: cjmin@szu.edu.cn
4 e-mail: xcyuan@szu.edu.cn
Tip-enhanced Raman scattering (TERS) spectroscopy is a nondestructive and label-free molecular detection approach that provides high sensitivity and nanoscale spatial resolution. Therefore, it has been used in a wide array of applications. We demonstrate a gap-plasmon hybridization facilitated by a bottom-illuminated TERS configuration. The gap-plasmon hybridization effect is first performed with the finite-difference time-domain method to optimize the parameters, and experiments are then conducted to calibrate the performance. The results demonstrate an enhancement factor of 1157 and a spatial resolution of 13.5 nm. The proposed configuration shows great potential in related surface imaging applications in various fields of research.
Photonics Research
2020, 8(2): 02000103
Author Affiliations
Abstract
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 e-mail: cjmin@szu.edu.cn
3 e-mail: xcyuan@szu.edu.cn
Polarization imaging finds applications in many areas, such as photoelasticity, ellipsometry, and biomedical imaging. A compact, snapshot, and high-efficiency imaging polarimeter is highly desirable for many applications. Here, based on a single multifunctional geometric phase optical element (GPOE), a new method is proposed for high-efficiency snapshot imaging polarimetry. With tailored spatially varying orientation of each anisotropic unit cell, the GPOE works highly efficiently as both a spin sorter and a half-wave plate, enabling snapshot retrieving of a full Stokes vector of incident light. The designed GPOE is implemented in the form of liquid crystal fabricated with a photo-alignment technology, and its application in imaging polarimetry is experimentally demonstrated by retrieving full Stokes parameters of a cylinder vector beam. This method can also work in the form of plasmonic or dielectric metasurfaces, enabling ultra-compact polarization detection systems by monolithic integration with other devices such as metalenses.
Photonics Research
2019, 7(9): 09001066
Author Affiliations
Abstract
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 e-mail: cjmin@szu.edu.cn
3 e-mail: xcyuan@szu.edu.cn
Strong plasmonic focal spots, excited by radially polarized light on a smooth thin metallic film, have been widely applied to trap various micro- and nano-sized objects. However, the direct transmission part of the incident light leads to the scattering force exerted on trapped particles, which seriously affects the stability of the plasmonic trap. Here we employ a novel perfect radially polarized beam to solve this problem. Both theoretical and experimental results verify that such a beam could strongly suppress the directly transmitted light to reduce the piconewton scattering force, and an enhanced plasmonic trapping stiffness that is 2.6 times higher is achieved in experiments. The present work opens up new opportunities for a variety of research requiring the stable manipulations of particles.
Polarization Optical tweezers or optical manipulation Plasmonics 
Photonics Research
2018, 6(9): 09000847
Author Affiliations
Abstract
Nanophotonics Research Center, Shenzhen University, Shenzhen 518060, China
Optical traps use focused laser beams to generate forces on targeted objects ranging in size from nanometers to micrometers. However, for their high coefficients of scattering and absorption, micrometer-sized metallic particles were deemed non-trappable in three dimensions using a single beam. This barrier is now removed. We demonstrate, both in theory and experiment, three-dimensional (3D) dynamic all-optical manipulations of micrometer-sized gold particles under high focusing conditions. The force of gravity is found to balance the positive axial optical force exerted on particles in an inverted optical tweezers system to form two trapping positions along the vertical direction. Both theoretical and experimental results confirm that stable 3D manipulations are achievable for these particles regardless of beam polarization and wavelength. The present work opens up new opportunities for a variety of in-depth research requiring metallic particles.
Optical tweezers or optical manipulation Laser trapping Micro-optics 
Photonics Research
2018, 6(2): 02000066

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!